Podocalyxin influences malignant potential by controlling epithelial–mesenchymal transition in lung adenocarcinoma
نویسندگان
چکیده
Epithelial-mesenchymal transition (EMT) plays an important role in the progression of lung carcinoma. Podocalyxin (PODXL), which belongs to the CD34 family and regulates cell morphology, has been linked to EMT in lung cancer, and PODXL overexpression is associated with poor prognosis in several different classes of cancers. The aim of this study was to clarify the role of PODXL overexpression in EMT in lung cancer, and to determine the prognostic value of PODXL overexpression in tumors from lung cancer patients. The morphology, EMT marker expression, and migration and invasion abilities of engineered A549 PODXL-knockdown (KD) or PODXL-overexpression (OE) lung adenocarcinoma cells were examined. PODXL expression levels were assessed by immunohistochemistry in 114 human clinical lung adenocarcinoma specimens and correlated with clinical outcomes. PODXL-KD cells were epithelial in shape, whereas PODXL-OE cells displayed mesenchymal morphology. Epithelial markers were upregulated in PODXL-KD cells and downregulated in PODXL-OE cells, whereas mesenchymal markers were downregulated in the former and upregulated in the latter. A highly selective inhibitor of phosphatidylinositol 3-kinase-Akt signaling attenuated EMT of PODXL-OE cells, while a transforming growth factor inhibitor did not, suggesting that PODXL induces EMT of lung adenocarcinoma cells via the phosphatidylinositol 3-kinase pathway. In lung adenocarcinoma clinical specimens, PODXL expression was detected in minimally invasive and invasive adenocarcinoma, but not in non-invasive adenocarcinoma. Disease free survival and cancer-specific survival were significantly worse for patients whose tumors overexpressed PODXL. PODXL overexpression induces EMT in lung adenocarcinoma and contributes to tumor progression.
منابع مشابه
Requirement of Podocalyxin in TGF-Beta Induced Epithelial Mesenchymal Transition
Epithelial mesenchymal transition (EMT) is characterized by the development of mesenchymal properties such as a fibroblast-like morphology with altered cytoskeletal organization and enhanced migratory potential. We report that the expression of podocalyxin (PODXL), a member of the CD34 family, is markedly increased during TGF-β induced EMT. PODXL is enriched on the leading edges of migrating A5...
متن کاملUbiquitin-specific protease 4 controls metastatic potential through β-catenin stabilization in brain metastatic lung adenocarcinoma
Brain metastasis is the most common type of intracranial cancer and is the main cause of cancer-associated mortality. Brain metastasis mainly originates from lung cancer. Using a previously established in vitro brain metastatic model, we found that brain metastatic PC14PE6/LvBr4 cells exhibited higher expression of β-catenin and increased migratory activity than parental PC14PE6 cells. Knockdow...
متن کاملCC-Chemokine Ligand 18 Induces Epithelial to Mesenchymal Transition in Lung Cancer A549 Cells and Elevates the Invasive Potential
Lung cancer is one of the leading causes of cancer related death worldwide with more than a million deaths per year. The poor prognosis is due to its high aggressiveness and its early metastasis. Although the exact mechanisms are still unknown, the process of epithelial to mesenchymal transition (EMT) seems to be involved in these neoplastic processes. We already demonstrated that serum levels ...
متن کاملExpression of the epithelial-mesenchymal transition-related proteins and their clinical significance in lung adenocarcinoma
BACKGROUND Epithelial-mesenchymal transition (EMT) is defined as switching of polarized epithelial cells to a migratory fibroblastoid phenotype. EMT is known to be involved in the progression and metastasis of various cancers. The aim was to evaluate that whether EMT-related proteins' alterations are associated with clinicopathological features and prognosis in lung adenocarcinoma. METHODS Th...
متن کاملMatrix metalloproteinase induction of Rac1b, a key effector of lung cancer progression.
Lung cancer is more deadly than colon, breast, and prostate cancers combined, and treatment improvements have failed to improve prognosis significantly. Here, we identify a critical mediator of lung cancer progression, Rac1b, a tumor-associated protein with cell-transforming properties that are linked to the matrix metalloproteinase (MMP)-induced epithelial-mesenchymal transition (EMT) in lung ...
متن کامل